STERIC CONTROL OF ASYMMETRIC INDUCTION IN MEERWEIN-PONNDORF REDUCTION OF α-PHTHALIMIDO-β-SUBSTITUTED PROPIOPHENONES*

D. FLES, B. MAJHOFER and M. KOVAČ

Research Institute, Organsko kemijska industnja, Zagreb. Yugoslavia

(Received in the UK 26 June 1967; accepted for publication 23 October 1967)

Abstract—Reduction of RCH_2 —CH(N = Phthaloyl)-CO—Ph (R = H, Me, OMc, SMe) with aluminum isopropoxide gives predominantly the threo isomer. The results were interpreted on the bases of "Rule **of Stenc Control of Asymmetric Induction" postulated by Cram and II has been suggested thar rhc "open** chain model" significantly contributes to the steric course of the described reactions.

A NUMBER of papers have been published in which aluminum isopropoxidc was used for the reduction of substituted propiophenones containing an asymmetric C atom adjacent to the CO group. In many of these examples the steric course of reduction could be predicted on the bases of Cram's rule of steric control of asymmetric induction.' **Two** mechanisms have been proposed to rationalize data pertaining to the steric direction of asymmetric induction. One is represented by open chain model I, in which the groups attached to the asymmetric center, S, M and L^+ .² do not compkx with the reagent used for reduction of CO, while the second mechanism proceeds via the rigid cyclic model II in which one of the groups attached to the asymmetric C atom can form complexes with the reagent.

I (open cham model) II (rigid model)

Cram and Green³ found that the reduction of 3-cyclohexyl-2-butanone with aluminum isopropoxide gave results incompatible with the open chain model. The cyclic model however can be used to predict the correct steric results. Sicher et $al⁴$ studied the reduction of α -acylamino- β -substituted p-nitropropiophenones (III) with the same reagent and postulated that the Cram's rule can predict the correct diastereoisomer if R'' is H, Cl, OAc, SBz, Ph_3CO , but if R'' is OH the open chain model

Presented by one of us (D.F.) before the 2nd Yugoslav Congress of Pure and Applied Chemistry, Belgrade, June, 1966.

⁺ S, M and L denotes small, medium and large groups according to the "effective bulk".

predicts the diastereoisomer opposite to that obtained experimentally. If however the rigid 6-membered ring system (IV) is applied, the correct diastereoisomer can be predicted in the reduction with aluminum isopropoxide. In previous studies on

the configuration of nor- ψ -ephedrine⁵ and chloramphenicol and derivatives^{6, 7} we reduced α -phthalimido- β -substituted-propiophenones (V) with aluminum isopropoxide under normal conditions of the Meerwein-Ponndorf-Verley reaction. In the papers,^{$5-7$} the steric course of reduction was not specifically controlled, although in all cases the rhreo isomers were isolated as predominant products of the reaction.

The configuration of the predominant diastereoisomers was determined by conversion to compounds of known configuration.

The major function of the present paper is to report the results of recent studies on the steric course of reduction of propiophenones (V) with aluminum isopropoxide. Propiophenones (V) were prepared from the corresponding acid chlorides via the

Friedel-Crafts synthesis and the ketones were then reduced to the diastereomeric carbinols (VI). The crude mixture of carbinols was acetylated and the ratio of threo to erythro isomer determined by means of NMR spectra.

The spectra of pure threo and erythro acetoxy derivatives were first recorded for VI ($R = H$, SMe, and OMe) and the chemical shifts of the Me group of β -substituent and of acetoxy groups determined. The configuration of the carbinol VI ($R = Me$) was assigned on the basis of analogy to the first three compounds. The ratio of three to erythro epimer was determined from the integrals of the NMR signals of the Me groups from the B-substituent or from the acetoxy group (Table 1).

R	Threo	Erythro	Threo/Ervihro
н ٠	1.83 (Ac)	2.10(Ac)	$2.8 + 0.1$
	1.28 (Me)	1.60 (Me)	
ОМе	189(Ac)	2.10(Ac)	$2.7 + 0.1$
	3.18 (OMe)	3.32 (OMe)	
Mc	$1-62(Ac)$	1.9(Ac)	$2-4 + 01$
SMe	186(Ac)	$2-10(Ac)$	
	1.91 (SMe)	2.12 (SMe)	$2.7 + 0.1$

TABLE 1. CHEMICAL SHIFTS (PPM) OF CHARACTERISTIC GROUPS OF RCH₁ -CH(N = PHTHALOYL)-CH(OAC)-PH AND THE RATIO OF Threo TO Erythro EPIMER

As evident from the Table 1, the threo isomer was in all cases the predominant product of reduction, the ratio of three isomer to erythro being of the order of $2.7:1$. It was further found that within the range of experimental error the same ratio of threo to erythro isomer was obtained when the reduction of ketone was stopped after 20 minutes, when a relatively low degree of conversion of ketone to carbinol was achieved. The ratio of both diastereoisomers did not change when the reaction mixture was heated for 24 hr under the normal condition of Meerwein–Ponndorf– Verley reduction. The pure threo and erythro isomers did not isomerize when heated for 24 hr with aluminum isopropoxide in isopropanol, which indicates the stability of both isomers under the conditions of experiment.

The predominant formation of one epimer in the reduction of ketone V, is an example of asymmetric induction which was extensively studied by Cram et al. and formulated as "Rule of Steric Control of Asymmetric Induction". By applying this rule to the steric course of reduction of ketone V ($R = H$ and Me) with aluminum isopropoxide, the results indicate that the open chain model (I) best explains the course of the reduction, since there is no group capable of complexing with the reagent. The electron pair on the N of the phthalimido group is highly delocalized and is relatively unavailable for coordination. Since phthalimido $> Me > H$, the Cram's rule predicts the predominant formation of the threo epimer which is in agreement with the experimental findings. The reduction of ketone $V(R = OMe$ and SMe) can proceed by both open chain model and by rigid 6-membered ring as proposed by Sicher⁴ and Felkin⁸ since OMe and SMe can form the complexes with the reagent. It is however unlikely that the mechanism of reduction of V ($\mathbb{R} = H$ or Me) differs from the one involved in the reduction of V ($R = OMe$ or SMe) since

the ratio of threo to erythro isomer is practically the same in all four cases. We therefore propose that open chain model I contributes signifantly in the reduction of ketones V with aluminum isopropoxide.

EXPERIMENTAL

The preparation of carbinols VI ($R = H$, OMe, SMe) has been described.⁶ ^a NMR spectra were recorded with a Varian A-60 spectrometer at room temp in CDCl₃ or benzene-d solns (100 mg/ml).

2-Phrholimid&ur,vric acid l **A Iincly powdered mixture of** I g **(001 mole) 2-gminobutyric acid and 1-M g (001 mole) phthalic anhydride was placzd m a round bottomed flask and heated m an oil bath with a** thermometer immersed in the reaction mixture. A vigorous evolution of wavter started between 130 140[°] and the reaction mixture melted. Heating was continued for 1 hr at the temp of 130–140°. After cooling the mixture was dissolved in 5 ml benzene. The benzene was partly evaporated, yielding 2.1 g (93%) of **white crystals m.p. 101** 102° *** (Found: C, 61.48; H, 4.56; N, 6.35. C_{1.2}H_{1.1}NO₄ requires: C, 61.79; H, 4 75; N. 6Cil",)**

2-Phthalimidobutyril chloride. 2-Phthalimodobutyric acid (22⁻02 g) was refluxed for 2 hr with 40 ml SOCI₂ The excess SOCI₂ was removed in vacuo, the residue repeatedly treated with benzene and distilled; **b.p. 204" (20 mm); m.p. 53–55"; yield 18.8 g (80%). (Found: C, 57.61; H, 3.55; N, 5.40. C₁₂H₁₀ClNO₃ requires: C. 57.14; H. 399; N. 555%).**

2-Phthalimidobutyrophenone. A mixture of 40 ml benzene and 10 g (0075 mole) anhyd AICI, was placed **m a 300 ml 3-necked llask. quipped with a mechanical stirrer. a dropping funnel and a rellux condenser.** The reaction mixture was heated to 70° and with rapid stirring, $6.3 g$ (0025 mole) α -phthalimidobutyril chloride dissolved in 20 ml benzene was added. The mixture was refluxed for an additional 3 hr, cooled and hydrolysed with 25 g ice and 2 ml conc HCl. The water layer was separated and extracted with two 50-ml portions benzene The combined benzene solns were washed with two 20-ml portions of satd NaHCO₃ aq followed by water and finally dried over Na₂SO₄. The benzene was removed in vacuo, and **the raiduc(49 g67/,. m.p. 110 113') was recrystallized from abs EtOH. m.p. 114-l 16" (Found: C, 73.72;** H. 506; N. 4^{.65.} C₁₈H₁₃NO₃ requires: C. 73.69; H. 5.27; N. 4.77%).

Reduction of 2-phthalimidobutyrophenone with aluminum isopropoxide. In a 100-ml round-bottomed flask fitted with a Hahn partial condenser, 3.36 g (0012 mole) of V (R = Me), 7.34 g (0036 mole) distilled **alummum isopropoxidc and 7Oml dry isopropanol were heated at such rate as to maintam the slow** distillation of acetone. After heating the mixture for 10 hr, the isopropanol was removed in vacuo, and **the residue hydrolysal with** *a soln of 10 g taruric* aad III 50 ml **water in the prcsencz ol30 ml benzene** The water layer was removed and extracted with three 10-ml portions benzene. The combined benzene soln was dried, the benzene removed in vacuo, and the residue (3.5 g; 95.5%) acetylated without further purification.

Actiyla\$on of mixture oj thrco and erythro- 1 *-phmyl-1 -hydroxy-2-phrholimidoburonr. The crude mixture of carbinols VI (R = Me) (3.5 g) was dissolved in 18.1 g Ac₂O and 16 ml pyridine. The reaction mixture* was cooled in ice for $\frac{1}{2}$ hr, then left at room temp overnight, and the solvent evaporated to dryness. The crude mixture of acetylated isomers was used for NMR measurements.

threo-1-Phenyl-1-hydroxy-2-phthalimodobutane. The threo-isomer was obtained as the less soluble **product in EIOH from the mtxturc d rhrro and** *cryrhro* **carbmols; m.p.** *12&125 (Found: C. 73.14;* **H.** 565; N. 502. C₁₈H₁, NO₃ requires: C. 73-20; H. 5-80; N. 4-74^o_o).

^o The preparation of the same compound by saponification of the corresponding ethyl ester has been **reported m p 94 95' '**

threo-1-Phenyl-1-acetoxy-2-phthalimidobutane, threo-Carbinol VI ($R = Me$; 1 g) was acetylated with 6.7 g Ac, O in 6 ml pyridine as previously described; m.p. $120-122$. (Found: C, 71.02; H, 5.82; N, 4.45.) $C_{20}H_{19}NO_4$ requires: C, 71.20; H, 5.67; N, 4.15%).

threo-1-Phenyl-1-acetoxy-2-phthalimidopropane, threo Carbinol VI ($R = H$; 2g) was acetylated with 8.6 ml Ac₂O in 17 ml pyridine, yield 1:56 g (68%), m.p. 117 118 from EtOH. (Found: C, 70.92; H, 5.55; N, 4.55. $C_{19}H_1$, NO₄ requires: C, 70.57; H, 5.30; N, 4.38%).

erythro-1-Phenyl-1-acetoxy-2-phthalimidopropane. Acetylation of the mother liquor from which the three carbinol was removed gave 16° , of an oily product. (Found: C, 70.76; H, 5.53; N, 4.66, C₁₉H, NO₄ requires: C, 70-57; H, 5-35; N, 4-33°_a).

Acknowledgements - The authors are indebted to Professor D. J. Cram from the University of California, Los Angeles and to Professor R. Adams from the University of Illinois, Urbana for reviewing the manuscript. Thanks are also due to Dr. B. Cernicki for determination and interpretation of NMR spectra, and to Mr. Z. Slijepčević for microanalyses.

REFERENCES

- ¹ D. J. Cram and A. Abd Elhafez, *J. Am. Chem. Soc.* 74, 5828 (1952).
- ² D. J. Cram and K. R. Kopecky, *J. Am. Chem. Soc.* 81, 2748 (1953).
- ³ D. J. Cram and F. D. Greene, *Ibid.* 75, 6005 (1953).
- ⁴ J. Sicher, M. Svoboda, M. Hrda, J. Rudinger and F. Sorm, Coll. Czeck. Chem. Comm. 18, 487 (1953).
- ⁵ D. Fleš and A. Markovac-Prpić, Croat. Chem. Acta 29, 183 (1957).
- ⁶ D. Fleš and B. Balenović, J. Am. Chem. Soc. 78, 3072 (1956); Croat. Chem. Acta 27, 149 (1955).
- M. Fleš, Ibid. 35, 257 (1963).
- ⁸ H. Felkin, Bull. Soc. Chim. Fr. 1050 (1956).
- ⁹ A. Hildesheimer, Ber. Dtsch. Chem. Ges. 43, 2796 (1911).